
Eric   Wu   and   Jeremy   Kanovsky  
ME-18,   Final   Project   Report  
Professor   Felix   Huang  
May   1,   2020  
 

Absolute   Translational   Position   Sensing   using   Inertial   Measurement   Units  
 

Introduction  
Inertial   measurement   unit   (IMU)   sensors   are   widely   used   in   a   variety   of   applications,   primarily  

due   to   their   relatively   low   cost   and   availability.   They   are   an   inexpensive   way   to   add   gyroscopic   and  
acceleration   data   collection   to   consumer   devices,   and   research   apparatuses.   Most   IMU   devices   are  
multi-axis,   meaning   they   are   capable   of   measuring   several   different   metrics   simultaneously,   often   in  
different   dimensions.   A   three   degree   of   freedom   (DOF)   IMU   might   measure   acceleration   in   the   x-,   y-,   and  
x-axis,   or   potentially   gyroscopic   motion   in   the   same.   A   six   degree   of   freedom   IMU   may   measure   both,   or  
replace   one   or   the   other   with   a   magnetometer.   Higher   DOF   units   are   available,   but   less   commonly   used.  

Unfortunately,   the   low   cost   of   IMU   devices   often   comes   with   drawbacks.   Because   the   chips  
inside   them   are   mass   produced   to   be   as   cost-efficient   as   possible,   they   usually   suffer   from   inaccuracies   or  
drift.   Drift   is   when   the   sensor   begins   to   accumulate   erroneous   data   points,   even   when   stationary.   This   can  
come   from   a   poorly   calibrated   sensor,   or   one   that   has   been   in   use   for   an   extended   period   of   time   (due   to  
the   nature   of   drift   to   accumulate   almost   exponentially).  

Because   of   this   particular   issue,   IMU   data   is   less   reliable   than   that   obtained   from   an   absolute  
position   or   absolute   orientation   sensor.   Inertial   measurement   units   generate   data   with   inherent   noise   and  
drift,   making   them   difficult   to   work   with   for   precision   applications,   or   even   applications   doing   more   than  
basic   computation   with   the   data.  

Our   research   project   is   to   investigate   the   viability   of   using   raw   data   obtained   from   a   low-cost  
IMU   device   to   keep   track   of   absolute   translational   position   in   an   unknown   reference   frame.   To   this   end,  
we   will   be   collecting   large   amounts   of   data   from   an   IMU,   and   attempting   to   use   it   to   track   the   path   of   an  
IMU   in   space   without   any   external   sensors   or   input   devices.   The   IMU   will   be   totally   isolated   from   its  
environment   in   that   it   will   be   unable   to   know   where   it   is   in   space   relative   to   other   objects.   Similar   work  
has   been   done   on   this   topic   for   orientation   sensing   using   a   gyroscope,   but   there   has   been   little   to   no  
success   finding   translation   using   an   accelerometer.  
 
Background   and   Related   Work  

As   mentioned   above,   some   work   has   been   done   to   find   and   track   absolute   orientation   of   a   device  
using   the   gyroscope   in   an   IMU.   A   study   done   by   A.R.   Jimenez   and   his   colleges   implemented  
dead-reckoning   algorithms   with   an   IMU   to   measure   human   strides .   This   work   ended   with   good   results  1

over   a   long   walking   distance,   but   unfortunately   was   not   expanded   upon   to   other   applications.   The  
algorithms   developed   and   implemented   were   dependent   on   the   assumption   that   the   IMU   was   measuring   a  
human   walking   stride,   and   therefore   factored   in   estimations   of   stride   length,   and   a   fairly   regular   gait.  

1   A.   R.   Jimenez,   F.   Seco,   C.   Prieto   and   J.   Guevara,   "A   comparison   of   Pedestrian   Dead-Reckoning  
algorithms   using   a   low-cost   MEMS   IMU,"    2009   IEEE   International   Symposium   on   Intelligent   Signal  
Processing ,   Budapest,   2009,   pp.   37-42.  



Other   work   on   the   topic   includes   Farhad   Aghilis   paper   on   using   two   IMU   sensors   to   determine   and   track  
attitude   and   position   of   mobile   robots .   This   work   falls   closer   to   the   goals   of   our   own,   but   relies   on   global  2

positioning   systems   (GPS)   to   reduce   drift   in   the   model.   The   Kalman   filter   developed   in   this   paper   relied  
on   input   from   the   GPS   as   part   of   the   state   estimation   input   matrix.  

Finally,   work   done   by   ETH   Zurich   combined   monocular   vision   and   the   popular   robotics   pose  
estimation   algorithm   SLAM   to   estimate   the   absolute   position   with   an   IMU .   As   with   the   other   approaches  3

mentioned,   this   relies   heavily   on   other   sensors.   While   the   authors   find   sensor   fusion   between   a   camera  
and   an   IMU   is   extremely   robust,   it   still   relies   on   the   robot   having   a   sensor   of   where   it   is   according   to   a  
visual   reference   frame.   For   systems   that   do   not   support   a   camera,   or   that   wish   to   operate   in   conditions  
unsuitable   to   vision   (such   as   in   total   darkness   or   low   light   conditions),   it   would   still   be   largely   beneficial  
to   use   only   input   from   an   IMU   for   translational   pose   estimation.  
 
Experimental   Setup  

The   IMU   we   chose   for   this   experiment   and   our   data   collection   was   a   MPU-6050   6-degree   of  
freedom   accelerometer   and   gyroscope.   While   originally   made   by   InvenSense ,   we   bought   this   sensor   on   a  4

breakout   board   supplied   by   Adafruit .   This   allowed   us   to   leverage   the   STEMMA   QT   connector  5

(developed   by   SparkFun)   and   communicate   easily   using   an   I 2 C   serial   bus.  
We   chose   to   use   a   Raspberry   Pi   Zero   microprocessor   with   Wi-Fi   to   power   our   IMU   and   provide  

data   logging   capabilities.   This   allowed   us   to   write   large   amounts   of   data   directly   into   a   comma   separated  
values   (CSV)   file.   The   benefit   of   the   Raspberry   Pi   is   that   we   could   quickly   and   easily   change   the  
configuration   of   the   data   we   chose   to   collect.   Initially   we   logged   all   six   axes   of   data   produced   from   our  
IMU.   However,   we   quickly   realized   that   clock   speed   limitations   meant   we   would   only   be   capable   of  
collecting   data   at   approximately   55   Hz.   By   eliminating   the   gyroscope   data   in   our   logs,   we   were   able   to  
increase   our   sampling   rate   to   approximately   100   Hz.   We   also   chose   to   include   a   timestamp   of   each   data  
point   for   purposes   of   data   processing   (discussed   later).  

The   IMU   and   Raspberry   Pi   boards   were   mounted   on   a   3D   printed   fixture   (shown   below).   In   this  
fixture   we   also   included   a   lithium   polymer   battery   that   would   power   both   boards.   This   allowed   us   to  
create   a   small,   and   wire-free   device   for   measuring   acceleration.   The   fixture   could   be   mounted   on   a  
robotic   car,   or   held   in   hand   and   moved   freely   through   space.   The   wireless   nature   of   the   Raspberry   Pi  
allowed   us   to   execute   data   collection   programs   and   retrieve   the   data   without   requiring   a   wired   connection  
to   the   board.   All   data   was   uploaded   directly   to   GitHub   for   processing .  6

2   F.   Aghili   and   A.   Salerno,   "Driftless   3-D   Attitude   Determination   and   Positioning   of   Mobile   Robots   By  
Integration   of   IMU   With   Two   RTK   GPSs,"   in    IEEE/ASME   Transactions   on   Mechatronics ,   vol.   18,   no.   1,   pp.  
21-31,   Feb.   2013.  
3   Nützi,   G.,   Weiss,   S.,   Scaramuzza,   D.    et   al.    Fusion   of   IMU   and   Vision   for   Absolute   Scale   Estimation   in  
Monocular   SLAM.    J   Intell   Robot   Syst    61,   287–299   (2011).   https://doi.org/10.1007/s10846-010-9490-z  
4   https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf  
5   https://www.adafruit.com/product/3886  
6   https://github.com/0xJeremy/ME-18-Final/tree/master/data  

https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.adafruit.com/product/3886
https://github.com/0xJeremy/ME-18-Final/tree/master/data


 
  (a)                                                                                 (b)  

 
  (c)                                                                                 (d)  

Figure   1     a.   Early   concept   sketch   of   the   sensor   system;   b.   Sensor   system   designed   in   SolidWorks;   c.   Sensor   system  
with   LEGO   Technic   compatibility;   d.   Complete   experimental   setup   with   two   MPU   6050   connected.  

 
Data   Collection   Methods  

The   data   collection   code   was   written   in   python   based   on   the   existing   MPU   6050   library   provided  
by   Adafruit   industries.   The   completed   code   can   be   found   in   the   Github   repository   under   the  
“data_logging”   folder.  

In   order   to   simplify   the   data   behavior   and   avoid   introducing   unnecessary   noise   during   the  
experiment,   we   decided   to   limit   the   movement   of   the   set   up   to   1D   translational   movement.   With   the  
materials   we   have   on   hand   in   my   house,   we   use   a    LEGO   MINDSTORMS   EV3   kit   to   construct   an  
unpowered   car   with   no   ability   to   steer,   simulating   an   environment   with   a   linear   slide   rail.   

The   experiment   is   done   by   placing   the   apparatus   on   a   clean,   flat   surface.   A   tape   measure   is  
secured   on   the   surface   next   to   the   car   along   the   direction   of   movement.   For   each   trial,   the   Raspberry   Pi  
would   record   the   raw   acceleration   and   gyroscopic   reading   for   10   seconds.   The   program   automatically  
writes   the   data   to   a   file   in   CSV   format.   Finally,   all   recorded   data   can   be   pushed   to   the   Github   repository  
for   later   access   and   manipulation.   A   picture   of   the   experimental   setup   is   shown   below   as   Figure   2.  



 
Figure   2:    Experimental   setup  

 
Over   the   course   of   the   project,   we   performed   multiple   sets   of   trials   with   different   movements.  

The   first   set   of   data   is   performed   by   moving   the   car   to   a   specified   position   and   then   back   to   the   origin.  
The   second   set   of   data   is   performed   by   moving   the   car   to   a   set   of   distinct   locations.   The   third   set   of   data   is  
performed   by   repeating   similar   movements   as   the   second   set   of   trials   with   another   MPU6050   sensor  
added   to   the   apparatus.  
 
Data   Pre-Processing   Techniques  

A   large   portion   of   the   success   of   our   project   predicates   on   having   meaningful   data   to   use   for  
analysis.   Because   low   cost   IMU   devices   are   notorious   for   having   sporadic   data   points   and   are   susceptible  
to   drift,   we   needed   robust   data   processing   techniques   that   would   help   us   smooth   and   process   the   data  
before   we   began   working   on   deriving   the   absolute   translational   position.   To   this   end,   we   experimented  
with   a   number   of   well   known   filtering   techniques.   Figure   3(a)   shows   the   raw   data   set   we   used   to   evaluate  
the   metrics   of   each   filter.  

The   first   technique   we   applied   was   a   convolution   to   the   raw   data.   We   choose   to   use   a   convolution  
of   variable   size   with   a   total   area   of   1.0.   By   varying   the   size   of   our   function   window,   we   were   able   to  
define   a   metric   for   how   much   we   wanted   the   data   smoothed.   The   smaller   the   convolution   window   the   less  
smoothing   would   occur.   By   defining   a   window   of   one,   we   essentially   applied   no   smoothing   to   the   data.  
Figure   3(b)   shows   the   results   of   this   technique,   with   window   sizes   of   five,   ten,   and   100.  

The   next   filter   implementation   we   developed   was   the   Savitzky-Golay   filter.   This   is   a   digital   filter  
designed   to   increase   precision   without   distorting   the   original   signal.   It   utilized   convolutional   filtering   and  
least   squares   on   subsets   of   the   data   to   give   the   final   result   a   smoothed   signal.   By   defining   the   order   of   the  
polynomial   used   to   fit   the   data,   we   were   able   to   also   define   the   “smoothing   coefficient”   so   to   speak   of   this  
filter.   Figure   3(c)   shows   the   results   of   such   technique   using   polynomials   of   fifth,   11th,   and   101th   order.  

We   then   developed   a   rolling   window   filter.   Using   the   rolling   window   function   from   the   Pandas  
data   processing   library,   we   experimented   with   windows   of   different   sizes.   Figure   3(d)   shows   the   results   of  
this   technique   using   window   sizes   of   one,   ten,   and   100.  



The   last   filter   technique   we   implemented   was   a   forward-background   digital   filter   using  
second-order   sections.   This   filter   applies   a   linear   digital   filter   twice   over   the   data,   once   in   the   forward  
direction   and   once   in   the   reverse   direction.   We   began   by   creating   a   lowpass   Butterworth   filter   with  
different   orders   and   critical   frequencies.   The   Butterworth   filter   was   then   applied   over   the   data.   We   used  
the   filter   order   and   cutoff   frequency   of   the   Butterworth   filter   as   our   metric   for   how   much   the   data   would  
be   filtered.   Figure   3(e)   shows   the   results   of   this   technique   with   a   constant   third   order   fit,   and   cutoff  
frequencies   of   0.75,   0.25,   and   0.1.  
 

  
(a)  

 
  (b)                                                                                 (c)  

 
  (d)                                                                                 (e)  

 
 



As   might   be   apparent   in   the   charts   for   each   technique,   they   are   remarkably   similar   and   can  
generate   much   of   the   same   results   depending   on   the   input   filter   parameters.   It   is   for   this   reason   we   believe  
that   the   filtering   technique   is   less   important   to   the   overall   experiment   than   it’s   existence.   The   data   must   be  
filtered   before   use   due   to   the   high   variance   observed,   but   this   filter   is   of   less   importance   than   the  
post-processing   techniques   described   below.   Implementations   of   these   data   filtering   techniques   can   be  
found   on   the   project’s   GitHub   page .  7

 
Data   Post-Processing   Techniques  

Much   of   our   data   post-processing   techniques   relied   on   trial   and   error.   Wr   quickly   found   that   a  
large   problem   with   our   data   was   drift   in   the   data.   When   we   performed   time   integrations,   the   calculated  
velocity   of   the   sensor   would   accumulate   error   exponentially.   Zeroing   all   the   data   according   to   the   mean   of  
the   entire   dataset   helped   linearize   the   error,   but   it   was   still   problematic   when   trying   to   draw   conclusions.  
We   found   that   one   of   the   most   successful   methods   for   eliminating   this   drift   was   to   perform   the   integration  
in   pieces.   This   would   allow   the   error   to   reset   every   time   we   split   the   data,   and   would   allow   us   to   choose  
arbitrary   break   points   where   we   observed   drift   becoming   a   major   problem.   Below   is   a   plot   showing   our  
original   integration   based   velocity,   and   then   our   transformed   data   after   segmentation.  
 

 
Figure   4:    Post   processing   the   data   using   segmentation  

 
This   method   makes   it   fairly   obvious   that   drift   is   a   relatively   major   problem.   With   segmented  

integration,   however,   we   are   able   to   perform   another   direct   integration   to   get   the   position.   Overall,   the  
following   steps   are   performed   on   the   data   from   start   to   finish:  

1. Data   is   loaded   into   a   Python   dictionary,   and   the   metadata   is   retrieved   from   the   filename   (which  
stores   the   travel   distance   of   the   IMU).  

2. A   time   differential   is   added   as   an   additional   column   to   the   data.   Then,   all   the   original   timestamps  
are   zeroed   to   begin   at   the   start   of   the   trial   period   (instead   of   timestamping   from   the   beginning   of  
the   Unix   Epoch).  

7   https://github.com/0xJeremy/ME-18-Final/tree/master/pre_processing  
 

https://github.com/0xJeremy/ME-18-Final/tree/master/pre_processing


3. The   data   is   sliced   into   various   sections,   by   time,   where   drift   is   present.   This   includes   sections  
containing   a   spike   of   data   where   the   IMU   was   moved,   and   flat   sections   where   there   was   no  
movement,   but   major   drift   is   present   in   the   data.   For   each   section   of   data   we:  

a. Remove   all   bias   from   the   data   by   calculating   the   mean   of   the   segment,   and   removing   that  
from   all   data   points.  

b. Apply   a   smoothing   technique   (outlined   in   the   pre-processing   section).   For   most   datasets,  
we   find   a   convolution   or   double   digital   filter   yields   the   best   results.   The   convolution  
window   size   or   digital   filter   order   and   cutoff   can   be   modified   per   dataset   for   the   best  
results.  

c. Perform   a   time-based   double   integration   of   the   data   to   yield   velocity   and   position  
columns.  

4. We   then   zip   all   the   data   slices   back   into   a   single   contiguous   whole.   We   offset   each   slice   by   the  
magnitude   of   the   last   item   in   the   previous   slice.   In   this   manner,   accumulations   in   velocity   are  
removed,   but   accumulations   in   position   still   exist.  
Below   are   some   of   our   results   from   applying   this   method.   Figure   5(a)   is   the   raw   data   from   the  

trials,   with   the   smoothing   filter   applied   over   it.   Figure   5(b)   is   the   calculated   velocity   at   each   point,   with  
the   red   lines   indicating   where   the   data   was   cut.   Figure   5(c)   is   the   calculated   position   of   the   IMU   over  
time,   with   the   green   lines   indicating   the   points   along   the   axis   the   unit   was   moved.  
 

 
  (a)                                                                                 (b)  

                         
                                                    (c)  



 
Results  

Overall   this   experiment   was   reasonably   successful   in   terms   of   meeting   its   goals.   We   were   able   to  
calculate,   with   millimeter   level   accuracy,   the   position   of   the   IMU   as   it   moved   across   our   predefined   track.  
Unfortunately,   this   method   relies   on   manual   tuning   of   the   time   breakpoints   by   hand.   This   is   non-optimal  
because   it   requires   different   breakpoints   per   dataset,   and   therefore   this   system   cannot   be   applied   in   real  
time.   Further   work   will   focus   on   peak   detection   of   a   system,   and   detection   of   when   the   sensor   begins   to  
accumulate   exponential   drift.   While   methods   exist   to   compute   both   of   these   automatically,   it   begins   to  
exit   the   scope   of   this   project   to   continue   further   work   into   that   area.   We   have   also   found   that   our   system   is  
not   infallible   to   all   the   datasets   we   collected.   The   charts   above   are   from   a   particular   subset   of   our   data   in  
which   the   IMU   was   moved   at   speed   across   the   table.   When   the   movement   is   slower,   the   data   becomes  
exponentially   noiser,   and   more   difficult   to   parse   and   process   accurately.   At   times,   the   IMU   readings  
appear   meaningless.   This   is   likely   due   to   our   sampling   rate   and   low-cost   sensor,   however,   and   not   our  
processing   techniques.  

Moving   forward,   there   are   several   areas   of   research   that   could   stem   from   these   experiments.   The  
first   would   be   to   apply   our   existing   system   in   real-time.   This   may   prove   difficult   because   much   of   our  
analysis   relies   on   being   able   to   apply   transforms   over   the   entire   dataset.   Another   would   be   peak   detection  
in   real-time,   and   the   ability   to   calculate   inherent   drift   in   the   sensor.   Perhaps   finding   ways   to   reset   the  
sensor   in   real-time   would   also   be   a   useful   avenue   to   investigate.   Finally,   expanding   our   system   to   one   that  
functions   across   a   wider   range   of   movements,   and   in   more   axis   than   outs.   We   confined   our   experiments   to  
a   single   dimension   in   most   cases   due   to   the   difficulty   that   poses   already.  
 
Conclusion  

Inertial   measurement   units   (IMUs)   are   extremely   robust   in   a   wide   range   of   applications.   We  
investigated   how   they   might   also   be   used   as   absolute   translational   position   sensors.   During   the   course   of  
our   investigation   and   experiments,   we   found   that   with   some   information   about   the   ground   truth   state   of  
movement   they   can   supply   reasonably   accurate   information   about   translation.   This   data,   however,   is   only  
useful   after   the   fact   when   processed   with   our   methods.   Further   work   might   be   performed   to   improve   the  
usability   of   this   system   in   real-time,   and   expand   on   our   findings.   The   implementations   of   all   our  
algorithms   and   data   processing   tools,   and   the   raw   data   from   our   trials   can   be   found   here:  
https://github.com/0xJeremy/ME-18-Final .  
 
References  
A.   R.   Jimenez,   F.   Seco,   C.   Prieto   and   J.   Guevara,   "A   comparison   of   Pedestrian   Dead-Reckoning  
algorithms   using   a   low-cost   MEMS   IMU,"    2009   IEEE   International   Symposium   on   Intelligent   Signal  
Processing ,   Budapest,   2009,   pp.   37-42.  
 
F.   Aghili   and   A.   Salerno,   "Driftless   3-D   Attitude   Determination   and   Positioning   of   Mobile   Robots   By  
Integration   of   IMU   With   Two   RTK   GPSs,"   in    IEEE/ASME   Transactions   on   Mechatronics ,   vol.   18,   no.   1,   pp.  
21-31,   Feb.   2013.  
 
Nützi,   G.,   Weiss,   S.,   Scaramuzza,   D.    et   al.    Fusion   of   IMU   and   Vision   for   Absolute   Scale   Estimation   in  
Monocular   SLAM.    J   Intell   Robot   Syst    61,   287–299   (2011).   https://doi.org/10.1007/s10846-010-9490-z  
 

https://github.com/0xJeremy/ME-18-Final


Appendix   A:   Updated   Project   Proposal   and   Milestones  
Project   Proposal:  

Objective:   Investigate   the   possibility   to   turn   a   6   DOF   Inertial   Measurement   Unit   into   an   absolute  
positional   sensor   using   various   data   processing   methods.  
 

Abstract:   Inertial   Measurement   Unit   (IMU)   sensors   are   widely   used   in   various   applications.   Some  
major   challenges   in   working   with   a   low-cost   IMU   sensor   is   noise   and   drifts   in   data   due   to   the   sensor  
itself,   and   the   difficulty   to   deduce   orientation   and   positional   information   from   the   on-board   accelerometer  
and   gyroscopes.   In   the   past,   people   have   been   using   sensor   fusion   algorithms   to   get   clean   absolute  
orientation   data   from   IMU   sensors.   For   our   project,   we   are   interested   in   investigating   the   feasibility   of  
getting   absolute   x,   y,   and   z   positional   data   from   a   low-cost   IMU.  
 

Our   data   collection   method   will   involve   setting   up   a   battery-powered   Raspberry   Pi   that  
communicates   with   an   MPU6050   IMU   sensor,   with   the   intention   to   create   a   cable-free   environment   and  
ensure   smooth   and   clean   translational   movements   during   data   collection.   We   will   be   moving   the   IMU  
fixture   in   a   series   of   predefined   paths   using   the   LEGO   MINDSTORMS   EV3   kit   we   have   on   hand.   For  
each   trial,   we   will   save   the   data   as   a   .csv   file   on   the   Raspberry   Pi   for   later   post-processing.  
 

We   will   then   try   to   use   various   methods   to   post-process   the   raw   IMU   data.   These   methods   will  
include   traditional   methods   of   time   based   double   integration   and   sensor   fusion,   and   also   more   modern  
techniques   such   as   convolutional   and   recurrent   neural   networks,   and   n-th   degree   polynomial   curve   fitting.  
We   will   then   try   to   compare   the   calculated   path   with   the   actual   path   traveled   by   the   sensor   and   see   how  
close   we   are   to   the   true   data.   An   example   metric   for   evaluating   the   accuracy   could   be   to   calculate   the   sum  
of   deviation   from   the   actual   path   at   different   locations   along   the   path.   
 

Hypothesis:   We   hypothesize   that   by   using   double-integration,   band-pass   filters,   machine   learning,  
or   a   combination   of   various   methods,   we   can   acquire   translational   position   data   from   the   6   DOF   IMU  
sensor.  

 
Milestones:  
Week   of   March   30th:  

● Finalize   our   revised   project   plans   and   submit   project   proposal  
● With   access   to   a   3D-printer   and   LEGO   kits,   Eric   will   finish   building   a   test   fixture   design   for   a  

cable-free   Raspberry   Pi   and   IMU   setup  
● Jeremy   will   write   a   data   logging   program   to   record   all   the   IMU   data   on   the   Raspberry   Pi.  
● We   will   begin   brainstorming   possible   translational   paths   to   use   for   collection   of   IMU   sensor   data.  

 
Week   of   April   6th:  

● We   will   finish   designing   and   building   the   IMU   fixture   and   the   LEGO   setup   to   control   it   (a   2   to   3  
DOF   robot   arm   or   a   3-wheeled   rover)   that   will   move   our   IMU   fixture   in   a   predefined,  
translational   path.  

● We   will   begin   collecting   IMU   sensor   data   and   perform   multiple   trials   of   the   same   path.  
 



Week   of   April   13th:  
● We   will   finish   collecting   the   raw   IMU   data   and   begin   processing   the   .csv   files  
● We   will   investigate   pre-processing   methods   to   smooth   the   data   (band-pass   filters,   moving  

averages,   and   gaussian   smoothing)  
● We   will   investigate   post-processing   methods   of   computing   the   absolute   translational   difference   as  

observed   by   the   IMU   sensor.  
● These   tasks   will   be   divided   evenly   so   that   we   can   investigate   more   ways   overall   of   applying  

transforms   to   the   data.  
 
Week   of   April   20th:  

● We   will   finish   applying   post-processing   methods   to   the   data   and   aggregate   the   data   according   to  
our   pre-defined   metric   of   success.  

● We   will   organize   our   finds   and   finish   the   project   presentation   and   report   with   the   collected   data.  
 
 
Appendix   B:   Eric   Wu   Logbook   Entries  
Project   Checkpoint   -   Week   2     Date:   03/30/20   -   04/05/20  
Accomplished:  

1. Test   Fixture   Design   and   Building  
With   the   equipment   I   have   on   hand,   I   was   able   to   quickly   come   up   with   a   cable-free   test   fixture  
by   soldering   an   MPU   6050   IMU   sensor   to   a   mini   breadboard   and   attaching   the   breadboard   to   the  
raspberry   Pi,   which   is   powered   by   a   1-cell   Lipo   battery.   I   also   designed   and   3D-printed   a   jig   that  
allows   me   to   attach   the   setup   to   LEGO   pieces   (see   attached   pictures   of   design   and   prototypes.)  
 

     
  

2. Pilot   Data   Acquisition  
With   the   test   fixture   I   built   last   week,   I   started   collecting   pilot   data   using   one   IMU   sensor.   The  
first   test   procedure   we   came   up   with   is   to   build   a   1D   LEGO   car   that   will   move   to   a   set   distance,  
stop   for   a   moment,   and   then   move   back   to   the   original   position.   By   doing   so   we   are   trying   to  
make   the   movement   consistent   with   each   trial   by   sending   the   same   speed   command   to   the   LEGO  
Motor.   



 
I   performed   a   total   of   15   trials,   and   all   of   the   csv   files   could   be   found   through   this   link:   
https://github.com/0xJeremy/ME-18-Final/tree/master/data/0405_1d  
Video   showing   me   testing   the   performance   of   the   setup:  
https://youtu.be/Od3rj-Xdm3U  
Video   taken   during   one   of   the   data   acquisition   trials:  
https://youtu.be/Wtaci9q5_MU  
 

Challenges:  
I   noticed   that   without   any   wait   function   in   my   code,   the   Pi   was   only   able   to   record   the   data   at   a  
maximum   speed   of   55Hz.   It   might   be   just   enough   for   the   purpose   of   our   experiment,   but   it   would  
be   nice   to   see   if   we   could   improve   the   sampling   rate.  
 
During   data   collection,   I   also   noticed   that   the   EV3   LEGO   motor   twitches   when   the   motor   stops  
moving,   which   resulted   in   a   noticeable   oscillation.   This   could   be   picked   up   and   accidentally  
“magnified”   by   the   IMU   sensor.   No   conclusion   could   be   drawn   before   we   could   visualize   the  
data.  
 

Goal   of   Next   Week:  
Visualize   the   pilot   data   using   python,   and   start   processing   it   with   various   data-smoothing   and  
data-filtering   techniques.  
 
Communicate   with   my   project   partner,   and   decide   whether   we   want   to   change   the   data   acquisition  
method,   sensor   setup,   code   infrastructure,   etc.  

 
Project   Checkpoint   -   Week   03     Date:   04/06/20   -   04/13/20  
Accomplished:  

1. Pilot   Data   Visualization  
With   all   the   data   I   collected   by   the   end   of   last   week,   My   partner   Jeremy   started   visualizing   the  
data   on   his   end   and   shared   the   results.   Here   are   some   example   plots   which   contain   the   raw   data  
recorded   by   the   IMU   sensor   during   one   of   the   trial.   During   the   specific   trial,   the   Car   moves   110  

https://github.com/0xJeremy/ME-18-Final/tree/master/data/0405_1d
https://youtu.be/Od3rj-Xdm3U
https://youtu.be/Wtaci9q5_MU


cm   forward,   pauses   for   half   a   second,   and   drives   back   to   its   original   position.   The   acceleration  
and   deceleration   of   the   car   was   made   consistent   by   setting   the   appropriate   speed   command   in   the  
LEGO   program.  

 
A   total   of   Three   Trials   of   the   same   movement   was   performed,   and   the   raw   results   from   one   are  
shown   below.   I   was   moving   the   IMU   sensor   in   the   positive   x   direction.  

 
From   the   raw   data,   it   seems   there   is   a   lot   of   noise   within   the   sensor   reading.   That   said,   we   could  
see   that   there   were   some   drastic   readings   coming   out   of   the   X   acceleration   reading   at   the   start   and  
end   of   the   data,   which   is   when   the   car   speeds   up   and   slows   down   -   this   is    consistent   with   the  
direction   to   which   I   directed   the   car   towards   during   the   trials.   We   could   also   see   that   the   Y   axis  
remains   at   around   zero,   and   the   Z   acceleration   was   constant   at   just   below   10   (which   is   consistent  
with   g   =   9.81m/s^2).  

 
2. Sampling   Rate   Improvement  

After   spending   some   time   playing   with   the   sensor   and   the   Raspberry   Pi,   I   found   that   by   only  
recording   the   X   and   Y   acceleration   data   and   getting   rid   of   the   print   function   through   SSH,   I   was  
able   to   increase   the   sampling   rate   to   about   125   Hz.   This   should   be   sufficient   for   the   purpose   of  
our   project.  
 
Visualization   of   data,   low-level   code   for   data   acquisition,   high-level   code   for   data   post-processing  
can   all   be   found   in   the   github   repository:    https://github.com/0xJeremy/ME-18-Final  
My   contributions   to   the   Repo   are   mainly   the   “data_logging”   folder,   which   contains   the   code   I  
wrote   to   record   data   using   the   Raspberry   Pi,   and   the   “data”   folder   which   contains   all   the   csv   files  
generated   (and   organized   in   sub-folders).  

 
Challenges:  

Without   running   the   raw   data   through   some   data   smoothing   algorithms,   We   did   not   seem   to   get   a  
lot   of   useful   data   from   the   sensor   during   the   initial   trials.  
 

Goal   of   Next   Week:  
We   plan   to   try   to   improve   the   results   out   of   the   sensor   by   splitting   the   tasks   in   the   following   way:  

https://github.com/0xJeremy/ME-18-Final


--I   will   continue   to   play   with   the   physical   setup   and   see   if   different   translational   movements   can  
generate   better   data   for   post-processing,   and   I   will   record   more   data   to   share   it   with   my   partner.  
--Jeremy   will   continue   looking   into   post-processing   methods,   as   well   as   improving   the   code   he  
uses   to   process   the   data.  
 
We   will   also   be   frequently   communicating   and   switching   tasks   during   the   rest   of   the   project,   so  
that   each   of   us   will   have   some   experience   with   both   data   acquisition   and   post   processing.  

 
Project   Checkpoint   -   Week   04     Date:   04/14/20   -   04/20/20  
Accomplished:  

1. Understanding   the   Processing   Methods  
https://towardsdatascience.com/types-of-convolution-kernels-simplified-f040cb307c37  
I   came   across   this   link   as   I   tried   to   understand   what’s   going   on   behind   the   data   smoothing   and  
filtering   techniques.   1D   Convolution   Smoothing   was   one   of   the   methods   that   appears   to   be   quite  
effective.   
 
Here   is   the   smooth_convolution   function   that   we   incorporate   as   one   of   our   post-processing  
methods.   This   part   of   the   code   is   written   by   my   project   partner,   Jeremy   Kanovsky.  

def     smooth_convolution (data,   smoothing_coefficient= 1 ):  
box   =   np.ones(smoothing_coefficient)/smoothing_coefficient  
data_copy   =   copy.deepcopy(data)  
for    key    in    data:  

if    key   ==    'time'     or    key   ==    'delta' :  
continue  

data_copy[key]   =   np.convolve(data[key],   box,   mode= 'same' )  
return    data_copy  

By   changing   the   “smoothing_coefficient”   that   gets   passed   into   the   function   along   with   the   1D  
data,   we   can   adjust   how   much   smoothing   the   function   performs   on   the   given   data.   Some  
examples:  

 
                  SC   =   5                                                       SC   =   100  

As   shown   from   the   plots   above,   I   noticed   that   simply   increasing   the   smoothing   coefficient   does  
not   necessarily   lead   to   a   more   promising   result.   Too   much   smoothing   might   accidentally   wipe   out  
trends   in   the   data.  

https://towardsdatascience.com/types-of-convolution-kernels-simplified-f040cb307c37


 
2. More   Data   Acquisition  

In   order   to   bring   the   post-processing   study   to   the   next   stage,   we   need   to   collect   some   new,   good  
data.   This   week,   using   the   set   up   I   previously   built,   I   spent   some   more   time   performing   trials   on  
the   IMU   sensor.  
 
For   the   second   set   of   data,   I   was   moving   the   test   fixture   by   sliding   it   back-and-forth   smoothly  
across   a   fixed   distance.   The   motion   is   limited   to   1D   by   placing   the   fixture   on   a   4-wheel.  
unpowered   LEGO   car.  
 
For   the   third   set   of   data,   I   used   the   same   physical   setup,   except   that   instead   of   moving   to   a  
position   and   return   to   the   origin,   I   moved   the   car   to   several   stop   points   (e.g.   0cm   -   40cm   -   20cm   -  
60cm).   

 
3. Updated   Sample   Data  

For   this   week’s   deliverable,   we   were   able   to   perform   some   post-processing   on   our   second   set   of  
data.   We   first   load   the   .csv   file   to   the   program,   retrieve   the   Acceleration   data   from   the   x   direction;  
we   then   run   the   data   through   one   of   our   pre-processing   tools   to   smoothen   the   data,   such   as  
convolution   smoothing,   double   digital   filter,   etc;   After   filtering   the   data,   we   performed  
double-integration   on   the   dataset,   assuming   a   starting   position   of   0m   and   an   initial   speed   of  
0m/sec.  

 
Figure   1                                                            Figure   2  

For   the   figures   above,   the   car   was   manually   moved   by   me   to   20cm   and   40cm.   I   paused   for  
approximately   2   seconds,   and   moved   the   car   back   to   its   original   position.   The   blue   line   shows   the  
calculated   position   with   respect   to   time;   as   a   comparison,   we   also   drew   two   green   lines  
representing   the   actual   position   that   I   moved   the   sensor   to.   We   generated   a   total   of   33   graphs   from  
the   .csv   files,   and   all   of   them   can   be   accessed   through   here:  
https://github.com/0xJeremy/ME-18-Final/tree/master/images/double_integration_position_plots  
 
From   figure   1   and   figure   2,   we   could   see   that   by   a   simple   double-integration,   we   were   able   to  
interpolate   the   position   from   acceleration   data   to   a   reasonably   accurate   degree.   However,   we   do  
see   that   the   value   tends   to   drift   after   a   sudden   change   in   acceleration.   This   is   mainly   present   in   the  
part   of   the   data   after   I   moved   the   fixture   back   to   the   original   position   -   the   value   starts   to   drift  

https://github.com/0xJeremy/ME-18-Final/tree/master/images/double_integration_position_plots


even   when   the   car   is   not   moving   at   all.   This   could   be   mainly   caused   by   the   small   drifts   from   the  
raw   sensor   readings,   which   somehow   got   magnified   during   the   data-smoothing   of   the   double  
integration   process.  

 
Challenges:  

The   results   from   all   33   plots   from   data   set   #2   are   fairly   inconsistent.   At   about   half   of   the   times,  
the   plots   generated   were   either   way   too   different   from   the   actual   distance   or   were   giving   some  
weird   predicted   values.   I   personally   found   this   a   little   surprising,   as   I   had   believed   that   I   was  
doing   a   pretty   good   job   in   maintaining   the   consistency   of   my   maneuvers   on   the   IMU   LEGO   car.  

 
After   talking   with   Professor   Huang   and   the   TAs,   there   are   two   potential   improvements   we   could  
try   implementing:   One   is   to   add   in   another   sensor,   with   maybe   a   different   axis   inline   with   the  
movement   of   the   car.   Hopefully   the   two   sensors   can   offset   the   drifts   that   each   of   them   would   have  
produced   individually.   The   other   is   find   a   way   to   move   the   car   in   a   more   

 
Another   challenge   might   come   up   if   we   eventually   wanted   to   get   the   position   data   from   real   time.  
As   we   are   using   a   Raspberry   Pi   zero,   doing   such   computations   might   significantly   slow   down   the  
sampling   rate   and   thus   might   negatively   affect   the   accuracy.  

 
Goal   of   Next   Week:  

Finish   processing   the   third   set   of   data,   which   contains   some   more   complicated   movements   of   the  
sensor   fixture.   If   time   allows,   do   some   more   trials   with   improved   stability   during   movements   or  
with   the   second   sensor   added.  

 
Warp   up   the   experiment   and   start   making   the   presentation   video   for   final   submission.  

 
Project   Checkpoint   -   Week   05     Date:   04/21/20   -   04/27/20  
Accomplished:  

1. More   Data   Acquisition  
I   got   feedback   from   Jeremy,   who   had   been   performing   most   of   the   data   post-processing   to   try   to  
extract   useful   positional   information   from   the   sensor   data   we   collected.   It   seemed   that   we   might  
still   want   to   introduce   a   second   sensor   into   the   experimentation   setup.   This   should   be   fairly   easy  
and   straightforward,   as   the   MPU6050   is   designed   to   communicate   through   I2C.  

 
So   I   take   a   closer   look   at   the   sensor   and   the   code:  
https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/pinouts  

 
After   some   research   I   found   out   that   all   of   the   MPU6050   from   Adafruit   have   the   default   0x68  
address   assigned   to   it.   However,   there’s   a   jumper   at   the   back   of   the   board   and   soldering   the   plates  
together   would   close   the   connection   and   make   the   address   0x69   -   perfect   for   our   purposes!   I   also  
modified   the   code   by   declaring   a   second   sensor   object   of   the   same   class.   Below   are   images   of   the  
final   setup:  

 

https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/pinouts


 
 

I   then   did   3   sets   of   data   acquisition,   all   of   them   have   the   same   movement   sequence   (0cm   -   20cm   -  
60cm),   but   have   different   value   output   to   the   csv   files:  

1   sensor,   all   6   axis   of   data  
2   sensors,   3   axis   of   acceleration   only  
2   sensors,   all   6   axis   of   data  

During   data   collection,   the   sampling   rate   of   the   Pi   reduced   by   at   least   half   the   rate   -   mostly  
because   I   increased   the   amount   of   data   being   loaded   to   the   csv   files.  

 
Updated   csv   files   as   well   as   the   code   have   been   updated   and   pushed   to   the   github   repository.  

 
Challenges:  

None-my   part   of   the   project   is   almost   done.   Perhaps   the   only   challenge   left   for   me   is   to   try   and  
understand   all   the   code   that   Jeremy   has   been   writing:)   .  
 

Goal   of   Next   Week:  
At   this   point,   we   should   be   all   set   in   terms   of   data   collection.   The   only   steps   left   for   this   project  
would   be   to   finish   the   final   report   and   the   final   presentation   video.  
 

 
Appendix   C:   Jeremy   Kanovsky   Logbook   Entries  
Project   Checkpoint   -   Week   2    Date:   03/30/20   -   04/05/20  
Accomplished:  

1. Data   Acquisition  
This   week   we   began   collecting   data   for   our   experiment.   Eric   worked   on   CADing   and   fabricating  
a   test   fixture   that   can   be   attached   to   LEGO   pieces.   He   also   built   a   LEGO   car   to   drive   our  
accelerometer   around   a   table   at   a   constant   rate.   This   is   extremely   useful   because   it   let’s   us  
eliminate   noise   in   the   dataset   without   any   processing.   It   is   possible   this   reduction   of   noise   will  
make   the   model   unrealistic,   but   we   can   always   remove   the   test   fixture   later   and   move   it   by   hand.  
The   data   collected   from   this   week   was   uploaded   to   GitHub   for   processing.   All   files   were   in   .csv  
format,   making   them   easy   to   parse   in   Python   (which,   we   decided,   would   be   our   language   of  
choice   for   processing).   

2. Data   Processing  



After   Eric   uploaded   the   data   from   this   set   of   trials,   I   began   working   on   data   processing.   I   started  
by   finding   a   way   to   ingest   the   data   into   Python.   Because   we   recorded   a   .csv,   I   wanted   to   find   a  
method   to   parse   the   individual   columns   into   a   dictionary.   I   also   wanted   to   be   able   to   ingest  
multiple   files   at   once   so   that   when   we   started   working   on   bigger   datasets   it   would   be   easier   to   get  
into   a   usable   format.   Initially   our   data   didn’t   contain   a   timestamp   which   was   unfortunate   because  
it   makes   double   integrations   difficult.   Some   rather   robust   data   tools   were   developed   this   week,  
which   can   be   found   here:  
https://github.com/0xJeremy/ME-18-Final/blob/master/pre_processing/load_data.py  
 

Challenges:  
As   mentioned   above,   we   don’t   have   timestamps   on   the   dataset.   This   is   not   problematic   at   the  
moment,   but   will   be   in   the   future   because   most   data   processing   techniques   for   double   integration  
rely   on   a   time-element.   Without   it   we   won’t   be   able   to   account   for   the   (albeit   small)   variations   in  
clock   speeds   between   trials,   and   between   file   writes.   Definitely   something   we   want   to   add   in   the  
future.   It   would   also   allow   us   to   calculate   a   “delta”   column   after   the   fact   for   use   in   other  
processing   techniques.  

 
Goal   of   Next   Week:  

Next   week   we   want   to   begin   visualizing   the   data,   and   begin   adding   some   smoothing   techniques.  
We   should   also   begin   researching   smoothing   techniques   before   the   fact   to   avoid   wasting   time   on  
some   that   might   not   work.  

 
Project   Checkpoint   -   Week   03    Date:   04/06/20   -   04/13/20  
Accomplished:  

1. Data   Visualization  
This   week   we   began   visualizing   the   data.   Below   is   a   chart   of   all   six   axis   of   data   we   recorded   (3  
accelerometer   and   3   gyroscope).   The   data   ingestion   techniques   made   last   week   made   this   process  
surprisingly   easy.   In   the   future   however   we   will   have   to   standardize   a   naming   convention   for   the  
files.   I   think   it   would   be   possible   to   store   metadata   about   each   trial   in   the   filename   and   load   that  
dynamically.   Something   to   think   about   and   talk   about   with   Eric.   One   interesting   thing   to   note  
about   the   data   is   the   effect   of   gravity   is   quite   pronounced.   It   may   prove   interesting   to   eliminate  
this   “bias”,   and   use   similar   techniques   to   eliminate   inherent   bias   from   the   other   columns.   It   might  
potentially   be   worth   trying   to   eliminate   drift   this   way.  

 
2. Smoothing   Techniques  

https://github.com/0xJeremy/ME-18-Final/blob/master/pre_processing/load_data.py


This   week   we   also   began   working   on   smoothing   techniques.   We   very   quickly   came   up   with   four  
different   techniques:   a   moving   convolution,   the   Savitzky-Golay   filter,   a   rolling   window,   and   a  
double   digital   filter   (forward-backward).   Initial   tests   with   these   filters   show   promise.   It’s   unlikely  
we   will   need   to   use   more   than   one,   but   it’s   nice   to   have   options.   Something   interesting   is   that   they  
all   filter   the   data   in   slightly   different   ways,   but   we   can   get   approximately   the   same   effect   between  
them   all.   It   will   be   good   to   investigate   if   one   is   actually   better   than   the   rest,   or   if   they   are   all  
“good   enough”.  
 

Challenges:  
There   weren't   any   major   challenges   this   week.   The   data   pipeline   between   trials   and   uploading   to  
GitHub   and   processing   in   Python   is   fairly   robust   and   serviceable.   The   largest   difficulty   is   how   to  
deal   with   different   file   names   between   trials.   I’m   working   on   a   system   for   metadata   processing  
using   a   filename.  

 
Goal   of   Next   Week:  

Next   week   we   will   need   to   invest   some   quantity   of   time   in   data   tooling.   While   it’s   manageable   at  
a   small   scale,   it   seems   we   need   to   make   small   adjustments   with   every   dataset.   It   would   be   nice   to  
have   comfort   knowing   we   can   load   any   dataset   without   modifying   the   main   processing   structure.  
On   Eric’s   end,   we   will   probably   continue   collecting   data   and   different   translational   movements.  
 

Project   Checkpoint   -   Week   04    Date:   04/14/20   -   04/20/20  
Accomplished:  

1. Data   Visualization  
This   week   I   put   most   of   my   time   inventing   methods   of   visualizing   all   aspects   of   the   data   in   as  
flexible   a   manner   as   possible.   We   developed   ways   of   plotting   the   acceleration,   gyroscope,   and  
individual   columns   of   data,   as   well   as   the   entire   dataset.   This   is   useful   for   auto   generating   plots   of  
the   data   all   at   once   for   side   by   side   comparison.   I   also   began   looking   into   3D   plots.   When   we  
have   translational   algorithms,   we   can   probably   verify   them   by   observing   the   motion   in   three  
dimensions   and   comparing   it   to   the   actual   movement.   All   visualization   techniques   can   be   found  
here:    https://github.com/0xJeremy/ME-18-Final/blob/master/visualization/plot.py .  

2. Beginning   Post   Processing  
This   week   I   also   began   experimenting   with   post   processing   techniques.   Because   of   the   new  
visualization   framework   we   can   experiment   with   different   algorithms   and   compare   them   to   the  
actual   movement.   Initial   work   with   double   integration   looks   promising.   Below   are   two   plots  
generated   from   doing   a   double   time   integrations   on   the   x-axis   accelerometer   data.  

https://github.com/0xJeremy/ME-18-Final/blob/master/visualization/plot.py


 
While   these   two   plots   make   it   appear   that   we   are   fully   successful,   other   plots   (not   included)   are  
less   optimistic.   These   two   plots   are   most   likely   outliers   in   the   dataset,   and   only   appear   correct   by  
coincidence.   Drift   is   starting   to   appear   to   be   a   problem.   In   the   second   graph   the   tail   end   of   the  
data   is   likely   caused   by   drift   in   the   sensor.   We’re   not   quite   sure   how   to   correct   this,   but   will  
continue   investigating.  
 

Challenges:  
While   the   plots   shown   above   are   very   consistent   with   the   ground   truth   of   the   data,   I   am   a   little  
concerned   that   as   we   move   forward   this   will   not   always   be   the   case.   We   are   going   to   have   to  
investigate   more   methods   for   translational   pose   estimation   beyond   double   integration   (if   it   were  
that   easy   it   would   have   been   done   long   ago).   We’re   a   little   unsure   what   next   steps   might   be   on  
this   front,   but   got   some   good   ideas   from   Professor   Huang   and   the   course   TAs.   Eric   has   also   been  
working   on   the   Raspberry   Pi   to   investigate   how   we   can   improve   data   collection   rate.  
 

Goal   of   Next   Week:  
We   would   like   to   investigate   other   methods   of   performing   post-processing   on   the   data.   One   early  
idea   was   to   use   machine   learning,   but   that   seems   unlikely   that   we   can   collect   a   large   enough  
sample   size   to   make   it   viable.   It   also   seems   problematic   to   solve   this   problem  
non-deterministically   because   that   may   lead   to   edge   cases   never   accounted   for   in   the   data.  
 

Project   Checkpoint   -   Week   05    Date:   04/21/20   -   04/27/20  
Accomplished:  

1. Data   Investigation  
This   week   I   began   to   work   on   further   investigations   into   the   data.   One   common   thing   I   began   to  
notice   was   drift   in   the   calculated   velocity   over   time   of   the   sensor.   While   I   only   computed   this   in   a  
single   axis,   it   likely   occurs   in   all   of   them.   There   are,   however,   techniques   to   remove   this   drift.   I  
am   having   a   little   trouble   implementing   them,   but   think   it’s   only   a   matter   of   time   invested.   A   very  
interesting   technique   I   found   was   the   one   outlined   here:  
https://dsp.stackexchange.com/questions/34463/removing-drift-from-integration-of-accelerometer 
-data .   I   intend   to   work   through   the   methods   proposed   in   the   post,   and   see   if   they   work   on   our  
dataset.  

2. Data   Collection  

https://dsp.stackexchange.com/questions/34463/removing-drift-from-integration-of-accelerometer-data
https://dsp.stackexchange.com/questions/34463/removing-drift-from-integration-of-accelerometer-data


Eric   has   (very   kindly)   agreed   to   collect   several   other   datasets   for   us   to   work   with.   I   don’t   yet  
know   exactly   what   kind   of   data   we   need   to   be   the   most   successful,   but   the   more   data   to   work   with  
will   probably   prove   useful.   Some   techniques   for   reducing   noise   seem   to   imply   sensor   fusion   of  
multiple   IMUs   can   be   used   to   reduce   overall   noise   and   drift.   Hopefully   we   can   align   the   data   and  
use   it   to   cancel   out   artefacts.  
 

Challenges:  
A   challenge   this   week,   that   will   likely   persist   into   the   future,   is   accumulated   noise   in   the   velocity  
and   position   estimates.  

 
Goal   of   Next   Week:  

I   would   like   to   focus   the   next   week   on   solving   the   issues   that   arise   in   data   processing,   and  
working   on   more   advanced   methods   of   data   interpolation.   We   will   also   begin   working   on   our  
final   report   and   video   presentation.  


